If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+24c+36=0
a = 1; b = 24; c = +36;
Δ = b2-4ac
Δ = 242-4·1·36
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-12\sqrt{3}}{2*1}=\frac{-24-12\sqrt{3}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+12\sqrt{3}}{2*1}=\frac{-24+12\sqrt{3}}{2} $
| 10x+2=8x+38 | | 13v=21+6v | | (5y/7)=35 | | 4h+19=2h-2h-17 | | -3d=7d+10 | | 7(3b-2)+15=3b-6+18b+23 | | -16t^2-4t+156=0 | | 3(x-7)=-3+3 | | n/3-6=2 | | 4x+4(-3x-20)=-160 | | 3x=18=11x-70 | | 7.884(x+1)-(x+2)=4.332x-19.215 | | 17=7x-60 | | 2(7r+4)=4r=136 | | 35x+25-45=540 | | -6c=-8c+10 | | b/4=-12 | | 2500-25x=0.5x | | t=-14 | | -3z=-4z-3 | | -12=s-2 | | 1/3z+2/3z=2 | | 11=k | | 5(2n+12)=10(n+3)-24n | | $95/10=x/1 | | 5x-2+6=9+3x+10 | | 3(x-2)=3(x+3) | | 4x30+8x+90=180 | | 16=100/x | | 2j+93=52 | | -5(a+3)=29+6a | | 10x+6=-3x-21=10x |